Applied Unsupervised Learning with Python: Discover hidden patterns and relationships in unstructured data with Python 1st Edition [NulledPremium]

seeders: 5
leechers: 0
updated:
Added by SunRiseZone in Other > E-Books

Download Fast Safe Anonymous
movies, software, shows...
  • Downloads: 151
  • Language: English

Files

[NulledPremium.com] Applied Unsupervised Learning with Python
  • Applied Unsupervised Learning with Python by Benjamin Johnston.epub (22.0 MB)
  • NulledPremium.com.url (0.2 KB)
  • Websites you may like
    • 1. (FreeTutorials.Us) Download Udemy Paid Courses For Free.url (0.3 KB)
    • 2. (FreeCoursesOnline.Me) Download Udacity, Masterclass, Lynda, PHLearn, Pluralsight Free.url (0.3 KB)
    • 3. (NulledPremium.com) Download Cracked Website Themes, Plugins, Scripts And Stock Images.url (0.2 KB)
    • 4. (FTUApps.com) Download Cracked Developers Applications For Free.url (0.2 KB)
    • 5. (Discuss.FTUForum.com) FTU Discussion Forum.url (0.3 KB)
    • How you can help Team-FTU.txt (0.2 KB)

Description

For More Content Visit NulledPremium >>> NulledPremium.com

For More Premium Graphics,Accounts,Freebies Visit >>> Forum.NulledPremium.com



Book details
Format: epub
File Size: 21 MB
Print Length: 482 pages
Publisher: Packt Publishing; 1 edition (28 May 2019)
Sold by: Amazon Asia-Pacific Holdings Private Limited
Language: English
ASIN: B07KX42TXY
Design clever algorithms that can uncover interesting structures and hidden relationships in unstructured, unlabeled data

Key Features

Learn how to select the most suitable Python library to solve your problem
Compare k-Nearest Neighbor (k-NN) and non-parametric methods and decide when to use them
Delve into the applications of neural networks using real-world datasets
Book Description
Unsupervised learning is a useful and practical solution in situations where labeled data is not available.

Applied Unsupervised Learning with Python guides you on the best practices for using unsupervised learning techniques in tandem with Python libraries and extracting meaningful information from unstructured data. The course begins by explaining how basic clustering works to find similar data points in a set. Once you are well versed with the k-means algorithm and how it operates, you’ll learn what dimensionality reduction is and where to apply it. As you progress, you’ll learn various neural network techniques and how they can improve your model. While studying the applications of unsupervised learning, you will also understand how to mine topics that are trending on Twitter and Facebook and build a news recommendation engine for users. You will complete the course by challenging yourself through various interesting activities such as performing a Market Basket Analysis and identifying relationships between different merchandises.

By the end of this course, you will have the skills you need to confidently build your own models using Python.

What you will learn

Understand the basics and importance of clustering
Build k-means, hierarchical, and DBSCAN clustering algorithms from scratch with built-in packages
Explore dimensionality reduction and its applications
Use scikit-learn (sklearn) to implement and analyse principal component analysis (PCA)on the Iris dataset
Employ Keras to build autoencoder models for the CIFAR-10 dataset
Apply the Apriori algorithm with machine learning extensions (Mlxtend) to study transaction data
Who this book is for
This course is designed for developers, data scientists, and machine learning enthusiasts who are interested in unsupervised learning. Some familiarity with Python programming along with basic knowledge of mathematical concepts including exponents, square roots, means, and medians will be beneficial.

Table of Contents

Introduction to Clustering
Hierarchical Clustering
Neighborhood Approaches and DBSCAN
An Introduction to Dimensionality Reduction and PCA
Autoencoders
t-Distributed Stochastic Neighbor Embedding (t-SNE)
Topic Modeling
Market Basket Analysis
Hotspot Analysis



Download torrent
22 MB
seeders:5
leechers:0
Applied Unsupervised Learning with Python: Discover hidden patterns and relationships in unstructured data with Python 1st Edition [NulledPremium]


Trackers

tracker name
udp://zephir.monocul.us:6969/announce
udp://tracker.torrent.eu.org:451/announce
udp://seedbay.net:2710/announce
udp://tracker.ds.is:6969/announce
udp://open.demonii.si:1337/announce
udp://denis.stalker.upeer.me:6969/announce
udp://tracker.iamhansen.xyz:2000/announce
udp://tracker.filepit.to:6969/announce
udp://tracker.nyaa.uk:6969/announce
udp://newtoncity.org:6969/announce
https://tracker.vectahosting.eu:2053/announce
https://tracker.nanoha.org:443/announce
udp://retracker.akado-ural.ru:80/announce
https://tracker.publictorrent.net:443/announce
http://tracker.yoshi210.com:6969/announce
udp://tracker01.loveapp.com:6789/announce
udp://tracker.nibba.trade:1337/announce
udp://bt1.archive.org:6969/announce
udp://tracker.tiny-vps.com:6969/announce
http://tracker.files.fm:6969/announce
udp://tracker.opentrackr.org:1337/announce
udp://explodie.org:6969/announce
udp://retracker.lanta-net.ru:2710/announce
udp://tracker.cyberia.is:6969/announce
http://tracker.gbitt.info:80/announce
http://tracker2.dler.org:80/announce
udp://z.mercax.com:53/announce
udp://bt.xxx-tracker.com:2710/announce
udp://torrentclub.tech:6969/announce
https://opentracker.co:443/announce
udp://exodus.desync.com:6969/announce
http://tracker3.itzmx.com:6961/announce
http://open.trackerlist.xyz:80/announce
udp://tracker.filemail.com:6969/announce
udp://bt2.archive.org:6969/announce
udp://retracker.netbynet.ru:2710/announce
http://t.nyaatracker.com:80/announce
https://opentracker.xyz:443/announce
http://t.acg.rip:6699/announce
https://tracker.fastdownload.xyz:443/announce
udp://tracker.uw0.xyz:6969/announce
https://t.quic.ws:443/announce
udp://tracker.moeking.me:6969/announce
udp://retracker.baikal-telecom.net:2710/announce
http://h4.trakx.nibba.trade:80/announce
udp://opentor.org:2710/announce
http://tracker2.itzmx.com:6961/announce
udp://bt.dy20188.com:80/announce
udp://tracker-udp.gbitt.info:80/announce
http://tracker.bt4g.com:2095/announce
udp://tracker.openbittorrent.com:80/announce
udp://open.stealth.si:80/announce
udp://amigacity.xyz:6969/announce
udp://9.rarbg.com:2710/announce
µTorrent compatible trackers list

Download torrent
22 MB
seeders:5
leechers:0
Applied Unsupervised Learning with Python: Discover hidden patterns and relationships in unstructured data with Python 1st Edition [NulledPremium]


Torrent hash: 4D3EE16795B29CD27D8E755834647BD6CEC5678B