Udemy - Fundamentals in Neural Networks

seeders: 0
leechers: 18
updated:

Download Fast Safe Anonymous
movies, software, shows...
  • Downloads: 75
  • Language: English

Files

[ TutGee.com ] Udemy - Fundamentals in Neural Networks
  • Get Bonus Downloads Here.url (0.2 KB)
  • ~Get Your Files Here ! 01 - Welcome_
    • 001 Welcome Message_.mp4 (35.4 MB)
    • 001 Welcome Message__en.srt (2.4 KB)
    • 002 Course Outline.mp4 (20.8 MB)
    • 002 Course Outline_en.srt (1.5 KB)
    02 - Artificial Neural Networks
    • 001 Linear Regression.mp4 (38.3 MB)
    • 001 Linear Regression_en.srt (11.3 KB)
    • 002 Logistic Regression.mp4 (28.2 MB)
    • 002 Logistic Regression_en.srt (9.0 KB)
    • 003 Purpose of Neural Networks.mp4 (16.7 MB)
    • 003 Purpose of Neural Networks_en.srt (14.9 KB)
    • 004 Forward Propagation.mp4 (21.9 MB)
    • 004 Forward Propagation_en.srt (7.6 KB)
    • 005 Backward Propagation.mp4 (30.3 MB)
    • 005 Backward Propagation_en.srt (9.0 KB)
    • 006 Activation Function.mp4 (33.7 MB)
    • 006 Activation Function_en.srt (15.4 KB)
    • 007 Cross-entropy Loss Function.mp4 (33.6 MB)
    • 007 Cross-entropy Loss Function_en.srt (11.4 KB)
    • 008 Gradient Descent.mp4 (37.6 MB)
    • 008 Gradient Descent_en.srt (15.5 KB)
    • 009 Lab 1 - Intro to Python.mp4 (475.7 MB)
    • 009 Lab 1 - Intro to Python_en.srt (54.4 KB)
    • 010 Lab 2 - Intro to Tensorflow.mp4 (160.2 MB)
    • 010 Lab 2 - Intro to Tensorflow_en.srt (18.0 KB)
    • 011 Lab 3 - Intro to Neural Network.mp4 (162.8 MB)
    • 011 Lab 3 - Intro to Neural Network_en.srt (24.7 KB)
    • 012 Lab 4 - Functional API.mp4 (80.6 MB)
    • 012 Lab 4 - Functional API_en.srt (14.3 KB)
    • 013 Lab 5 - Building Deeper and Wider Model.mp4 (83.2 MB)
    • 013 Lab 5 - Building Deeper and Wider Model_en.srt (14.0 KB)
    • 37923168-sec1-lab1-intro-to-python.ipynb (59.4 KB)
    • 37923170-sec1-lab2-basic-tensors.ipynb (15.7 KB)
    • 37923174-sec1-lab3-intro-to-neural-networks.ipynb (38.3 KB)
    • 37923178-sec1-lab4-functional-api.ipynb (47.6 KB)
    • 37923180-sec1-lab5-wide-deep-model.ipynb (27.3 KB)
    03 - Convolutional Neural Network
    • 001 Image data.mp4 (19.3 MB)
    • 001 Image data_en.srt (8.2 KB)
    • 002 Tensor and Matrix.mp4 (7.2 MB)
    • 002 Tensor and Matrix_en.srt (5.1 KB)
    • 003 Convolutional Operation.mp4 (15.3 MB)
    • 003 Convolutional Operation_en.srt (14.1 KB)
    • 004 Padding.mp4 (26.5 MB)
    • 004 Padding_en.srt (9.0 KB)
    • 005 Stride.mp4 (17.0 MB)
    • 005 Stride_en.srt (7.0 KB)
    • 006 Convolution in 2D and 3D.mp4 (18.1 MB)
    • 006 Convolution in 2D and 3D_en.srt (7.7 KB)
    • 007 VGG16.mp4 (50.3 MB)
    • 007 VGG16_en.srt (11.2 KB)
    • 008 Residual Network.mp4 (25.6 MB)
    • 008 Residual Network_en.srt (11.2 KB)
    • 009 Lab 1 - Intro to Conv1D.mp4 (90.0 MB)
    • 009 Lab 1 - Intro to Conv1D_en.srt (12.7 KB)
    • 010 Lab 2 - Intro to CNN.mp4 (183.7 MB)
    • 010 Lab 2 - Intro to CNN_en.srt (30.8 KB)
    • 011 Lab 3 - Deep CNN.mp4 (124.4 MB)
    • 011 Lab 3 - Deep CNN_en.srt (23.2 KB)
    • 012 Lab 4 - Transfer Learning.mp4 (173.5 MB)
    • 012 Lab 4 - Transfer Learning_en.srt (25.2 KB)
    • 37923184-sec2-lab1-intro-conv1D.ipynb (6.3 KB)
    • 37923190-sec2-lab2-cnn.ipynb (479.4 KB)
    • 37923192-sec2-lab3-deep-cnn.ipynb (94.2 KB)
    • 37923752-sec2-lab4-transfer-learning.ipynb (2.2 MB)
    04 - Recurrent Neural Network
    • 001 Welcome to RNN.mp4 (1.3 MB)
    • 001 Welcome to RNN_en.srt (1.1 KB)
    • 002 Why Use RNN.mp4 (16.5 MB)
    • 002 Why Use RNN_en.srt (9.5 KB)
    • 003 Language Processing.mp4 (29.9 MB)
    • 003 Language Processing_en.srt (13.2 KB)
    • 004 Forward Propagation in RNN.mp4 (33.0 MB)
    • 004 Forward Propagation in RNN_en.srt (14.6 KB)
    • 005 Backward Propagation Through Time.mp4 (33.8 MB)
    • 005 Backward Propagation Through Time_en.srt (10.8 KB)
    • 006 Gated Recurrent Unit (GRU).mp4 (13.3 MB)
    • 006 Gated Recurrent Unit (GRU)_en.srt (11.1 KB)
    • 007 Long Short Term Memory (LSTM).mp4 (34.1 MB)
    • 007 Long Short Term Memory (LSTM)_en.srt (10.7 KB)
    • 008 Bi-directional RNN.mp4 (17.6 MB)
    • 008 Bi-directional RNN_en.srt (7.2 KB)
    • 009 Lab 1 - RNN in Text Classification.mp4 (131.8 MB)
    • 009 Lab 1 - RNN in Text Classification_en.srt (20.6 KB)
    • 010 Lab 2 - Sequence to Sequence Stock Candlestick Forecast.mp4 (212.8 MB)
    • 010 Lab 2 - Sequence to Sequence Stock Candlestick Forecast_en.srt (34.7 KB)
    • 37923202-sec3-lab1-text-classification-rnn.ipynb (120.4 KB)
    • 37923960-sec3-lab2-stock-market-candlestick-prediction.ipynb (262.7 KB)
    • Bonus Resources.txt (0.3 KB)

Description

Fundamentals in Neural Networks



https://TutGee.com

MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Genre: eLearning | Language: English + srt | Duration: 37 lectures (6h 42m) | Size: 2.24 GB
Build up your intuition of the fundamental building blocks of Neural Networks
What you'll learn:
Understand the intuition behind Artificial Neural Networks
Understand the intuition behind Convolutional Neural Networks
Understand the intuition behind Recurrent Neural Networks
Apply Artificial Neural Networks in practice
Apply Convolutional Neural Networks in practice
Apply Recurrent Neural Networks in practice

Requirements
There is no prior coding or programming experience required. This course assumes you have your own laptop and the code will be done using Colab.

Description
Deep learning (also known as deep structured learning) is part of a broader family of machine learning methods based on artificial neural networks with representation learning. Learning can be supervised, semi-supervised or unsupervised. Deep-learning architectures such as deep neural networks, deep belief networks, deep reinforcement learning, recurrent neural networks and convolutional neural networks have been applied to fields including computer vision, speech recognition, natural language processing, machine translation, bioinformatics, drug design, medical image analysis, material inspection and board game programs, where they have produced results comparable to and in some cases surpassing human expert performance.

This course covers the following three sections: (1) Neural Networks, (2) Convolutional Neural Networks, and (3) Recurrent Neural Networks. You will be receiving around 4 hours of materials on detailed discussion, mathematical description, and code walkthroughs of the three common families of neural networks. The descriptions of each section is summarized below.



Download torrent
2.5 GB
seeders:0
leechers:18
Udemy - Fundamentals in Neural Networks


Trackers

tracker name
udp://tracker.torrent.eu.org:451/announce
udp://tracker.tiny-vps.com:6969/announce
http://tracker.foreverpirates.co:80/announce
udp://tracker.cyberia.is:6969/announce
udp://exodus.desync.com:6969/announce
udp://explodie.org:6969/announce
udp://tracker.opentrackr.org:1337/announce
udp://9.rarbg.to:2780/announce
udp://tracker.internetwarriors.net:1337/announce
udp://ipv4.tracker.harry.lu:80/announce
udp://open.stealth.si:80/announce
udp://9.rarbg.to:2900/announce
udp://9.rarbg.me:2720/announce
udp://opentor.org:2710/announce
µTorrent compatible trackers list

Download torrent
2.5 GB
seeders:0
leechers:18
Udemy - Fundamentals in Neural Networks


Torrent hash: DC9FBD999347EE2CEA19233274D66120A2886DF8