Udemy - Mathematical Foundations of Machine Learning (Updated 09 - 2021)

seeders: 13
leechers: 12
updated:

Download Fast Safe Anonymous
movies, software, shows...

Files

[ CourseMega.com ] Udemy - Mathematical Foundations of Machine Learning (Updated 09 - 2021)
  • Get Bonus Downloads Here.url (0.2 KB)
  • ~Get Your Files Here ! 01 - Data Structures for Linear Algebra
    • 001 Introduction.html (2.6 KB)
    • 002 What Linear Algebra Is.mp4 (133.0 MB)
    • 002 What Linear Algebra Is_en.srt (28.2 KB)
    • 003 Plotting a System of Linear Equations.mp4 (57.1 MB)
    • 003 Plotting a System of Linear Equations_en.srt (11.4 KB)
    • 004 Linear Algebra Exercise.mp4 (37.5 MB)
    • 004 Linear Algebra Exercise_en.srt (6.5 KB)
    • 005 Tensors.mp4 (8.9 MB)
    • 005 Tensors_en.srt (3.2 KB)
    • 006 Scalars.mp4 (92.1 MB)
    • 006 Scalars_en.srt (15.9 KB)
    • 007 Vectors and Vector Transposition.mp4 (49.2 MB)
    • 007 Vectors and Vector Transposition_en.srt (13.2 KB)
    • 008 Norms and Unit Vectors.mp4 (64.9 MB)
    • 008 Norms and Unit Vectors_en.srt (17.0 KB)
    • 009 Basis, Orthogonal, and Orthonormal Vectors.mp4 (8.9 MB)
    • 009 Basis, Orthogonal, and Orthonormal Vectors_en.srt (5.5 KB)
    • 010 Matrix Tensors.mp4 (45.2 MB)
    • 010 Matrix Tensors_en.srt (9.6 KB)
    • 011 Generic Tensor Notation.mp4 (27.1 MB)
    • 011 Generic Tensor Notation_en.srt (8.3 KB)
    • 012 Exercises on Algebra Data Structures.mp4 (6.5 MB)
    • 012 Exercises on Algebra Data Structures_en.srt (2.7 KB)
    • external-assets-links.txt (0.1 KB)
    02 - Tensor Operations
    • 001 Segment Intro.mp4 (2.0 MB)
    • 001 Segment Intro_en.srt (1.8 KB)
    • 002 Tensor Transposition.mp4 (10.3 MB)
    • 002 Tensor Transposition_en.srt (4.1 KB)
    • 003 Basic Tensor Arithmetic, incl. the Hadamard Product.mp4 (18.3 MB)
    • 003 Basic Tensor Arithmetic, incl. the Hadamard Product_en.srt (6.6 KB)
    • 004 Tensor Reduction.mp4 (7.7 MB)
    • 004 Tensor Reduction_en.srt (3.9 KB)
    • 005 The Dot Product.mp4 (16.0 MB)
    • 005 The Dot Product_en.srt (6.2 KB)
    • 006 Exercises on Tensor Operations.mp4 (12.8 MB)
    • 006 Exercises on Tensor Operations_en.srt (3.0 KB)
    • 007 Solving Linear Systems with Substitution.mp4 (14.7 MB)
    • 007 Solving Linear Systems with Substitution_en.srt (11.6 KB)
    • 008 Solving Linear Systems with Elimination.mp4 (17.5 MB)
    • 008 Solving Linear Systems with Elimination_en.srt (13.9 KB)
    • 009 Visualizing Linear Systems.mp4 (29.9 MB)
    • 009 Visualizing Linear Systems_en.srt (13.4 KB)
    03 - Matrix Properties
    • 001 Segment Intro.mp4 (3.2 MB)
    • 001 Segment Intro_en.srt (2.8 KB)
    • 002 The Frobenius Norm.mp4 (15.7 MB)
    • 002 The Frobenius Norm_en.srt (5.8 KB)
    • 003 Matrix Multiplication.mp4 (70.5 MB)
    • 003 Matrix Multiplication_en.srt (28.8 KB)
    • 004 Symmetric and Identity Matrices.mp4 (8.6 MB)
    • 004 Symmetric and Identity Matrices_en.srt (5.6 KB)
    • 005 Matrix Multiplication Exercises.mp4 (11.8 MB)
    • 005 Matrix Multiplication Exercises_en.srt (8.4 KB)
    • 006 Matrix Inversion.mp4 (74.5 MB)
    • 006 Matrix Inversion_en.srt (19.8 KB)
    • 007 Diagonal Matrices.mp4 (8.2 MB)
    • 007 Diagonal Matrices_en.srt (3.7 KB)
    • 008 Orthogonal Matrices.mp4 (11.2 MB)
    • 008 Orthogonal Matrices_en.srt (6.0 KB)
    • 009 Orthogonal Matrix Exercises.mp4 (47.4 MB)
    • 009 Orthogonal Matrix Exercises_en.srt (16.5 KB)
    04 - Eigenvectors and Eigenvalues
    • 001 Segment Intro.mp4 (101.5 MB)
    • 001 Segment Intro_en.srt (21.5 KB)
    • 002 Applying Matrices.mp4 (18.8 MB)
    • 002 Applying Matrices_en.srt (8.4 KB)
    • 003 Affine Transformations.mp4 (95.9 MB)
    • 003 Affine Transformations_en.srt (21.1 KB)
    • 004 Eigenvectors and Eigenvalues.mp4 (202.3 MB)
    • 004 Eigenvectors and Eigenvalues_en.srt (28.4 KB)
    • 005 Matrix Determinants.mp4 (45.4 MB)
    • 005 Matrix Determinants_en.srt (8.8 KB)
    • 006 Determinants of Larger Matrices.mp4 (53.9 MB)
    • 006 Determinants of Larger Matrices_en.srt (9.5 KB)
    • 007 Determinant Exercises.mp4 (27.4 MB)
    • 007 Determinant Exercises_en.srt (5.2 KB)
    • 008 Determinants and Eigenvalues.mp4 (89.3 MB)
    • 008 Determinants and Eigenvalues_en.srt (16.4 KB)
    • 009 Eigendecomposition.mp4 (83.9 MB)
    • 009 Eigendecomposition_en.srt (12.9 KB)
    • 010 Eigenvector and Eigenvalue Applications.mp4 (75.8 MB)
    • 010 Eigenvector and Eigenvalue Applications_en.srt (13.8 KB)
    05 - Matrix Operations for Machine Learning
    • 001 Segment Intro.mp4 (15.8 MB)
    • 001 Segment Intro_en.srt (4.0 KB)
    • 002 Singular Value Decomposition.mp4 (76.6 MB)
    • 002 Singular Value Decomposition_en.srt (11.2 KB)
    • 003 Data Compression with SVD.mp4 (97.0 MB)
    • 003 Data Compression with SVD_en.srt (12.1 KB)
    • 004 The Moore-Penrose Pseudoinverse.mp4 (97.7 MB)
    • 004 The Moore-Penrose Pseudoinverse_en.srt (13.9 KB)
    • 005 Regression with the Pseudoinverse.mp4 (134.2 MB)
    • 005 Regression with the Pseudoinverse_en.srt (21.5 KB)
    • 006 The Trace Operator.mp4 (38.8 MB)
    • 006 The Trace Operator_en.srt (5.7 KB)
    • 007 Principal Component Analysis (PCA).mp4 (64.8 MB)
    • 007 Principal Component Analysis (PCA)_en.srt (9.9 KB)
    • 008 Resources for Further Study of Linear Algebra.mp4 (31.7 MB)
    • 008 Resources for Further Study of Linear Algebra_en.srt (6.6 KB)
    06 - Limits
    • 001 Segment Intro.mp4 (23.7 MB)
    • 001 Segment Intro_en.srt (4.4 KB)
    • 002 Intro to Differential Calculus.mp4 (52.5 MB)
    • 002 Intro to Differential Calculus_en.srt (15.6 KB)
    • 003 Intro to Integral Calculus.mp4 (15.9 MB)
    • 003 Intro to Integral Calculus_en.srt (3.2 KB)
    • 004 The Method of Exhaustion.mp4 (53.6 MB)
    • 004 The Method of Exhaustion_en.srt (8.0 KB)
    • 005 Calculus of the Infinitesimals.mp4 (75.3 MB)
    • 005 Calculus of the Infinitesimals_en.srt (11.4 KB)

Description

Mathematical Foundations of Machine Learning (Updated 09/2021)



MP4 | Video: h264, 1280x720 | Audio: AAC, 44.1 KHz, 2 Ch
Genre: eLearning | Language: English + srt | Duration: 105 lectures (15h 33m) | Size: 3.9 GB
Essential Linear Algebra and Calculus Hands-On in NumPy, TensorFlow, and PyTorch
What you'll learn:
Understand the fundamentals of linear algebra and calculus, critical mathematical subjects underlying all of machine learning and data science
Manipulate tensors using all three of the most important Python tensor libraries: NumPy, TensorFlow, and PyTorch
How to apply all of the essential vector and matrix operations for machine learning and data science
Reduce the dimensionality of complex data to the most informative elements with eigenvectors, SVD, and PCA
Solve for unknowns with both simple techniques (e.g., elimination) and advanced techniques (e.g., pseudoinversion)
Appreciate how calculus works, from first principles, via interactive code s in Python
Intimately understand advanced differentiation rules like the chain rule
Compute the partial derivatives of machine-learning cost functions by hand as well as with TensorFlow and PyTorch
Grasp exactly what gradients are and appreciate why they are essential for enabling ML via gradient descent
Use integral calculus to determine the area under any given curve
Be able to more intimately grasp the details of cutting-edge machine learning papers
Develop an understanding of what’s going on beneath the hood of machine learning algorithms, including those used for deep learning

Requirements
All code s will be in Python so experience with it or another object-oriented programming language would be helpful for following along with the hands-on examples.
Familiarity with secondary school-level mathematics will make the class easier to follow along with. If you are comfortable dealing with quantitative information — such as understanding charts and rearranging simple equations — then you should be well-prepared to follow along with all of the mathematics.

Description
Mathematics forms the core of data science and machine learning. Thus, to be the best data scientist you can be, you must have a working understanding of the most relevant math.

Getting started in data science is easy thanks to high-level libraries like Scikit-learn and Keras. But understanding the math behind the algorithms in these libraries opens an infinite number of possibilities up to you. From identifying modeling issues to inventing new and more powerful solutions, understanding the math behind it all can dramatically increasing the impact you can make over the course of your career.



Download torrent
4.3 GB
seeders:13
leechers:12
Udemy - Mathematical Foundations of Machine Learning (Updated 09 - 2021)


Trackers

tracker name
udp://tracker.torrent.eu.org:451/announce
udp://tracker.tiny-vps.com:6969/announce
http://tracker.foreverpirates.co:80/announce
udp://tracker.cyberia.is:6969/announce
udp://exodus.desync.com:6969/announce
udp://explodie.org:6969/announce
udp://tracker.opentrackr.org:1337/announce
udp://9.rarbg.to:2780/announce
udp://tracker.internetwarriors.net:1337/announce
udp://ipv4.tracker.harry.lu:80/announce
udp://open.stealth.si:80/announce
udp://9.rarbg.to:2900/announce
udp://9.rarbg.me:2720/announce
udp://opentor.org:2710/announce
µTorrent compatible trackers list

Download torrent
4.3 GB
seeders:13
leechers:12
Udemy - Mathematical Foundations of Machine Learning (Updated 09 - 2021)


Torrent hash: 2E0D99AC3594CAD782734A47B5A6CB624D4CD745